Man's Use of Energy: Past, Present, and Future

Michael Cornyn, KG5VAR February 13, 2020 Changes by Adrian Zeffert, 4/16/20

Mankind's survival and growth

Three of those needs are.....

- Nourishing food
- Clean water
- Easily accessible energy

Has two ultimate sources.....

Bing.com

• Natural radioactivity of rocks

Uranium Ore

Wikipedia

A portion of the Sun's energy is stored in

• Plants

Coal

- Wood
- Ethanol

- Buried freshwater swamp plant material cracked by temperature and pressure
- Oil and Natural Gas
 - Buried marine life whose remains are cracked by temperature and pressure

Bramsmanswanderings.com

A direct portion of the Sun's energy can be used through

• Solar Cells

• Wind Turbines

Wholesalesolar.com

Useable energy from natural occurring radioactivity

• Electricity from heat conversion in Nuclear Reactors

Wikipedia

World Population Versus Sources of Energy Used Over Time.....

Manteo

other renewables

eia

hydroelectric nuclear

natural gas

petroleum

2014

1950

100% Practical Light Bulb TIMELINE DF 80% Practical INVENTIONS Airplane 60% 1900 - Modern Day wood 40% coal Inventions 20% Important Inventions 1900 - 1915 0% 1776 1900 1850

Man and Animal Power ...

From Man's First Recorded Appearance until the Mid 19th to 20th Century....

- Man and Animal Power were the common energy sources used for: ٠
 - Transportation ٠
 - Farming ٠
 - Most citizens lived on farms
 - Lack of availability or affordability of farm machines
 - Most food was grown for local used (lack of refrigeration)

- Number of farms decreased
 - People moved to cities for better life •
- Farms consolidated into larger farms ٠
- Farms became more efficient with machinery ٠
 - One man and a ox could plow roughly one acre per day
 - Two 1500 lb. horses and a man could plow 1.5 2 acres in 10 hours
 - A modern tractor could plow roughly 60 150 acres per day

Bing.com

Bing.com

Fuel Wood

Until the mid – late 1950's wood was a major energy source on farms and in home Pros

- Plentiful until 1950's
- Need can be provided by one or larger work force
- Can be stored for long time and heat content can improve

Cons

- Water content of new non-dried wood cuts output BTUs
- Storage can take up alot space
- With time and growing user base wood becomes less plentiful

(Source: buildingscience.com)

Heat content of one pound of oven dry wood is approximately 8600 BTU.

Resinous softwoods , short leaf pine, can have a average heat content of 9050 BTU per oven-dry pound.

(Source: University of Missouri)

Note: Woods replacement (Coal) heat content is between 12,000 -15,000 BTU

Coal Formation

Coal is the resultant product of the decay, burial, compression, and concentration of the resultant carbon content of fresh and/or brackish water plant material in swamps, lagoons or river deltas

- Process called Coalification
- The Rank of a coal signifies it's quality and output heat content

RANK	MOISTURE	VOLATILE MATTER	FIXED CARBON CONTENT	HEAT VALUE (BTU)
Lignite	30% - 60%	25% - 30%	25% -35%	4000 - 8300
Subbituminous	10% - 45%	30% - 40%	35% -45%	8500 - 12,000
Bituminous	5% - 15%	20% - 40%	45% -86%	12,000 - 15,000
Anthracite	-5%	-5% Coal	86% -98%	13,000 - 15,000

Coal >=50% Carbon

Coal Facts.....

First uses of Coal:

- Chinese used it ~3000 years ago
- In 1850's used to manufacture goods and power steamships
- First used in US to generate electricity in 1880's
- By 1961 Coal was major fuel to generate electricity
- Present major uses of Coal
 - Electricity generation called thermal coal
 - Steel production called coking (or metallurgical) coal
 - Cement manufacturing (<u>www.worldcoal.org</u>)

Pros:

- Cheapest form of raw energy
- US mined fuel US reserves are 20% of World's Reserves
- Employs a large number of people

• Environmental concerns

Manteo GeoResources LLC

Mining, Environmental Issues, Coal Electrical Generation

Coal Mining Areas in United States

Coal

East of Mississippi mining predominately underground West of Mississippi mining predominately surface

- Note: US has World's largest coal reserves (250 B tons) Third largest consumer (317 M tons)
- But: Coal dust is a fire hazard Coal requires a large storage area Heat content: 1 ton coal = 203 gallons of fuel oil

Environmental Issues

- Fly ash from high fusion materials leave improperly designed furnace
 - Arsenic can be associated with fly ash, and contaminate groundwater
 - Possible future hazardous waste
- Mercury can be emitted during the burning of coal
 - Coal-fired power plants are largest source of mercury emissions in US
 - Considered a Hazardous Air Pollutant by US EPA
 - Number of coal electric generation stations has decreased since 1990

Oil/Gas Climate, Hydrocarbon Source, Traps.....

Climate Last 800,000 years

NASA GISS

Climatic Change Oil/Gas Sources

- Lower mean temperatures
 - Mean sea level lowers
 - Surface erosion on continent increases
 - Fewer animals/plants
 - Dead animals/plants are buried by sediment
- Warm mean temperatures
 - Mean sea level rises
 - Continental erosion decreases
 - More animals and plants.

Structural and Stratigraphic Traps

Ditch and Suth,2015

Indiana Oil/Gas History......

~100 Years Ago Indiana was the Saudi Arabia of the World

- 1837 gas in Findley area used in house, groundwater had SO
- 1884 Dr Charles Oesterlin, formed first gas drilling company in Findlay, Ohio
- 1886- Significant gas discovery at Eaton, Delaware County, IN started gas boom
- 1889- Commercial oil production began near Keystone, Wells County, Indiana
- 1904- Peak oil production 1910- Field gas is depleted (From Indiana DNR)

Source: Indiana DNR

U.S. Areas That Have Produced Oil/Gas

Manteo

Left: Areas of historical oil (red), gas (green), or mixed (yellow) production in the contiguous United States as of 2005 (immediately prior to the shale boom). Right: Current (solid orange, plus blue and black outlines) and prospective (solid red) shales for oil/gas production, overlain on major sedimentary basins (tan), as of 2016. Image credits: Laura R.H. Biewick, U.S. Geological Survey;¹ U.S. Energy Information Administration.²

Source: AmericanGeosciences.org

Historical

2005

Projected

2010

Year

2015

Unconventional

Alaska

2025

2030

- Conventional

2020

Oil/Gas Conventional, Unconventional (Horizontal).....

www.horizontaldrilling.org

Oil/Gas Prices (This was written before the current drop in Gas prices) Demand, Politics and Inflation

Federal fuel tax 2019 18.3 cents/ gasoline 24.3 cents/ diesel Indiana fuel tax 2019 30 cents/ gasoline 49 cents/ diesel Inflation: 2007 \$1.00 = \$1.2394 in 2020 (lendingtree.com)

www.fuelsmarketnews.com

Oil/Gas Producers Past and Today......

Effect of Risk/Reward

Six Largest Oil/Gas Companies......

- . Exxon
- Chevron
- EOG Resources .
- **Occidental Petroleum**
- Marathon Petroleum
- Source: technavio blog

All Public Stock Owned Companies.....

Effect of inflation, risk and reward......

1980 US Companies Many Were Household Names **31 Contributing Companies** Amerada Hess Corporation Amoco Production Company Ashland Oll, Inc. Atlantic Richfleid Company

Champlin Petroleum Company Chevron Oil Company

BP Alaska

Cities Service Company Columbia Gas Development Corporation Continental Cil Company Diamond Shamrock Corporation ERA North America, Inc. Exxon Company, U.S.A. Getty Oil Company Gulf Energy and Minerals Company Kerr-McGee Corporation Marathon OII Company Mobil OII Corporation Ocean Production Company Pennzoli Company

Phillips Petroleum Company

Placid OII Company Shell Oll Company Skelly Oil Company

Sun OII Company

Superior Oil Company Tenneco OII Company

Texaco, Inc.

Texas Eastern Transmission Corporation

Transco Exploration Company

Union Oll Company of California

Manteo **GeoResources LLC**

As of 2018 only 3 US Companies In World's Largest

Source: technavio blog

Nuclear Electricity Power Generation..... Manteo GeoResources LLC

Pros

Hack College

- Non-green house gas emitter
- Consistent base load supplier of energy
 - Good to use with renewable energy sources because output can be raised or lowered
- Low operating cost supplier

Ohio Governor Signs Coal and Nuclear Bailout at Expense of Renewable Energy https://Insideclimatenews.org

First nuclear reactor: University of Chicago, 1932
First nuclear power plant: Obninsk, Russia in June 1954. (sciencing.com)
Number of nuclear power plants: 96 (US) 439 (World) 13.8% of World's power
How much power does a nuclear power plant generate: 8 TWhr /yr.
Useful life: 20 – 40 years (Last US nuclear plant completed in 1996, a plant in Ga is under construction)
Estimated cost to construct: \$4000/kW (scitizen.com, Nov., 2008)

Cons:

- Potentially high environmental damage and controversial (Ex. Chernobyl, Ukraine, Fukushima, Japan and Three Mile Island, USA)
- High startup and yearly regulation costs
- Radioactive waste disposal storage
 - 80,000 metric tons spent fuel rods, stored at 75 sites, 35 states, \$.5 B/ yr
 - Radioactive waste from weapon manufacturer, 4 sites, 4 states \$6 B/ yr
 - Yucca Mt, Nevada waste site, authorized 1982, \$4 B spent, still not open
- Limited or no US supplier of certain materials for construction or re-conditioning of nuclear plants

Solar PV Electrical Power..... Renewal Energy Source

Solar

Solar PV Effect: 1839 French physicist Edmond Becquerel

First solar cell: 1883 American Charles Fritts

Cost for typical 1500 sq ft house: \$7-26K (3 kWh – 10 kWh solar panel system, typically 6 kWh ~\$18,500)

Manteo GeoResources LLC

Solar ROI: 7 – 20 years

Pros

- Once installed requires little maintenance, lasts 25-30 years
- Generated electricity sold directly to utility which could reduce monthly electric utility bill
- Federal and State governments give incentives for installing working panel systems
 - State of Hawaii plans to have ~100% of its electricity needs produced by residential solar PV by 2045
- Cost of Solar PV systems are decreasing

Cons

- Only generates electricity when sun is out
- No or limited electric storage capabilities available
 - A Tesla battery to store the energy equivalent of one barrel of oil (3000 lbs.) would weigh 20,000 lbs. and cost \$200,000. (Econonics21, July 2019)
- Site and ground surface area needed for panels

Wind Turbines..... Renewable Power....

Pros

- Able to generate electricity 24/7
- Can generate enough electricity for 1 1000s of homes
- Most environmentally friendly of electricity generation methods

Cons

- Utility generators need an average wind of ~13 mph
- Doesn't have method to store electricity
- Site and footprint of tower and Wind Farm, and sound of turbine when in operation.

Wind was used in antiquity to:

• Power, pump water, grind wheat, etc.

First used to generate electricity:

- In 1887 by Prof James Blyth in Glasgow
- In 1887 Charles F Brush in Cleveland, OH

First utility scale wind turbine (100kw):

• 1931 in Balaklava, USSR

First Megawatt size wind turbine:

• 1941 in Castleton, Vermont

1973-2000 US Wind Turbine Development:

- NASA, DOE, and industry work to develop large commercial wind turbines
- Many of the NASA design and parts used today
- Oil price crash of 1980-1990 kills US industry
- Vestas, Siemens get in business with 2MW power plant and parts
- Teachers and students from the Tvind school built the first 3 blade wind turbine seen today
- By 2014, 240,000 wind turbines produce 4% of world's energy

Wind Turbines.....

Western Ohio Wind Farm Example.....

www.power-technology.com

Example: Blue Creek Wind Farm (Red Circle):

- Located in Van Wert and Paulding Counties, Ohio
- 152 2MW turbines on 27,000 of 40,500 acers
- Generates 304 MW, enough power for 76,000 homes
- Total cost \$600 million, owned by Iberdrola Renewables

In 2014 total wind turbine power generation 336 GW with China, US, Germany, Spain, Italy in lead. Wikipedia.org

Manteo GeoResources LLC

Present Energy Consumption..... World & US Values..... U.S. primary energy consumption by energy source, 2018 total = 101.3 guadrillion

China is the largest total primary consuming nation

Reference of the second second

petroleum

🔵 renewables 🛛 🛑 nuclear

Manteo **GeoResources LLC**

total = 11.5 guadrillion Btu

natural gas

coal

Future World Energy Consumption.....

developing world

Energy Outlook Forecast 2019 - 2040....

The demand for energy is set to increase significantly driven by increases in prosperity in the

Key Points of BP Forecast

- World GDP more than doubles by 2040
- Improved living standards (especially in China and India) drive energy consumption up by 33%
- Most of the world (67%) still have a low energy consumption
- Industry and buildings account for 75% of energy increase
- Electric cars (~25% of fleet) sharply slow transportation needs
- Electrical power generation absorbs 75% of new energy consumption
- Natural gas use increases, oil grows then plateaus, US tight oil replaced by OPEC
- Coal consumption is relatively flat

Non Fuel Consumer Products (Plastics, clothing, medicine, etc.....)

Energy Consumption Forecast Scenarios

Primary energy demand

World Consumption Forecast Details

Shares of primary energy

Manteo GeoResources LLC

*Renewables includes wind, solar, geothermal, biomass, and biofuel

*Industry excludes non-combusted use of fuels

Present and Future US Electricity Sources...... Trends and Cost Comparison.....

If the US's energy industry remains consumer driven, not government dictated then the following may continue.

Future Oil/Gas Trends

Forecasting Can Be Difficult...

Manteo GeoResources LLC

Countries with Largest Oil Reserves – Future Powers ??

Other Future Energy Sources..... Decade or More Away.....

Advanced enhanced oil recover technology

- Present oil recovery technology leaves 70% or more of the oil in a reservoir
 - If oil recovery could be improved by 10%

Recovery of Methane Hydrate from vast deposits formed under great pressure and low temperatures

- Vast deposits of Methane gas is trapped in ice crystals at approximately 2600 feet
- These Methane deposits are found bordering most continents and in the Artic Permafrost
- Production techniques to produce it have been elusive.

Fusion Reactor

• Produces vast amount of energy with no waste

Mine Helium 3 on the moon and use it on Earth or in orbit to generate electricity

- Proposed by Dr. Harrison Schmitt, NASA astronaut/geologist who visited the moon on Apollo 14
- In his book "Return to the Moon

Conclusions

Man's "Quality of Life" is directly related to the availability and quantity of energy that can be used

• Go without electricity for one day

All "Man Kind" probably aspire for the same "Quality of Life and, therefore the energy needed for that goal.

The non-renewable energy forms (oil and gas) are useful for other material needs then burning

• Oil – plastics, fabrics, plants, medicines, etc. Natural Gas - plastics

Renewable energy forms are good and are improving in cost for generating electricity

The US is "energy" rich a) 20% of the World's coal reserves, b) 40% of the World's Uranium Reserves,c) large mass in the lower 48 useful for renewable energy generation from Wind and Solar PV,d) second largest shale oil reserves, plus the technology, and e) second to fourth largest shale gas reserves

We are in an enviable position and need to protect ourselves from outside and inside groups that could threaten our freedom to allow millions of people to vote daily on our energy sources and use.

As seen in Ohio Wind , politicians are already working at making some decisions for us... Get Involved......

If you would like to explore this Presentation in more detail, please go to the CMARA Website, 'Presentations', to download a copy. It should be on the site by, Apr 20. I am sure that Michael would be interested in any additions or corrections.

Credit:

Michael Cornyn, KG5VAR

- Is a Licensed Professional Geologist (LPG) in Indiana
- President of Manteo GeoResources LLC, a Louisiana LLC
- A graduate of Wright State University, Dayton, OH BS 74 Geology and MS 77 Geology
- Worked 42 years in the Oil and Gas Industry as a geophysicist and geologist
 - Onshore Gulf Coast and Appalachian Basin
 - Offshore and Deep- Water Gulf of Mexico
 - China, Mediterranean, and Venezuela
- Until recently lived in Lafayette, Louisiana and Houston, Texas